首页> 外文OA文献 >Laplacian LRR on Product Grassmann Manifolds for Human Activity Clustering in Multi-Camera Video Surveillance
【2h】

Laplacian LRR on Product Grassmann Manifolds for Human Activity Clustering in Multi-Camera Video Surveillance

机译:拉普拉斯LRR在产品Grassmann流形上的人类活动   多摄像机视频监控中的聚类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In multi-camera video surveillance, it is challenging to represent videosfrom different cameras properly and fuse them efficiently for specificapplications such as human activity recognition and clustering. In this paper,a novel representation for multi-camera video data, namely the ProductGrassmann Manifold (PGM), is proposed to model video sequences as points on theGrassmann manifold and integrate them as a whole in the product manifold form.Additionally, with a new geometry metric on the product manifold, theconventional Low Rank Representation (LRR) model is extended onto PGM and thenew LRR model can be used for clustering non-linear data, such as multi-cameravideo data. To evaluate the proposed method, a number of clustering experimentsare conducted on several multi-camera video datasets of human activity,including Dongzhimen Transport Hub Crowd action dataset, ACT 42 Human actiondataset and SKIG action dataset. The experiment results show that the proposedmethod outperforms many state-of-the-art clustering methods.
机译:在多摄像机视频监控中,正确呈现来自不同摄像机的视频并将其有效融合以实现诸如人类活动识别和聚类之类的特定应用具有挑战性。本文提出了一种新颖的多摄像机视频数据表示形式,即ProductGrassmann流形(PGM),以将视频序列作为Grassmann流形上的点进行建模,并将它们作为整体以乘积流形形式进行集成。产品流形上的几何度量,将常规的低秩表示(LRR)模型扩展到PGM上,并且新的LRR模型可用于对非线性数据(例如多摄像机视频数据)进行聚类。为了评估所提出的方法,在几个多摄像机人类活动视频数据集上进行了许多聚类实验,包括东直门交通枢纽人群行动数据集,ACT 42人类行动数据集和SKIG行动数据集。实验结果表明,所提出的方法优于许多最新的聚类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号